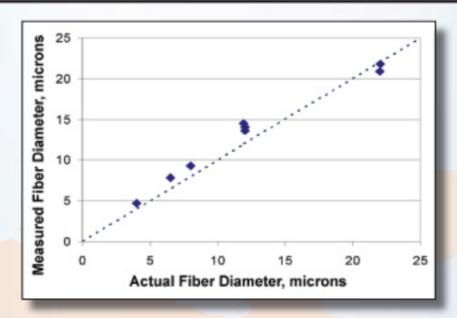
Average Fiber Diameter Analyzer

Applications

Performance of many fibrous products such as filter media, membranes, battery parts, and household products is determined primarily by factors such as fiber diameter and packing density. For many applications quick estimation of the average fiber diameter is required. The techniques that are used for fiber diameter measurements are often involved and time consuming. The PMI's completely automated average fiber diameter analyzer has the unique ability to measure average fiber diameter of bulk samples in a few minutes. It is used in industry for production control, quality control, and performance evaluation.

Principles of Operation


The flow rates of gas through the sample as a function of differential pressure are accurately measured and these results are used to compute average fiber diameter on the basis of the relationship reported by C.N. Davies. (C.N. Davies, The Separation of Airborne Dust and Particles, Proceedings of the Institute of Mechanical Engineers, London, 1B, 1952, pp.185-194).

According to Darcy's law, the permeability, k of a porous material to a gas is given by:

$$(F \mu I)/(A \Delta p) = k$$

where F is volume flow rate through the material at average pressure, A is area of the sample, μ is viscosity of gas, Δp is differential pressure, and I is thickness of sample. Models of gas flow through fibrous materials suggest that permeability, k is a function of square of fiber diameter, R, and packing density, c. Packing density is fractional volume occupied by fibers and is equal to (1-P), where P, the porosity, is the fractional pore volume. Davies has shown that the following relationship holds for a wide variety of fibrous materials in which the porosity P is in the range, 0.7 - 0.99.

 $(4 \Delta p A R^2) / (\mu F I) = 64 c^{1.5} [1 + 52 c^3]$

Measured fiber diameters plotted against the actual fiber diameters

Average fiber diameter by permeability technique.			
Nonwoven	Porosity,	Actual fiber diameter,	Measured fiber diameter,
	P	microns	microns
#1	0.79	4.0	4.7
#2	0.79	6.5	7.8
#3		8.0	9.3
#4	0.77	12	14.0
#5	0.74	22	21.3

Other Products

Average Fiber Diameter Analyzer

Bubble Point Tester

Capillary Flow Porometer

Capillary Condensation Flow Porometer

Complete Filter Cartridge Analyzer

Clamp-On Porometer

Compression Porometer

Custom Porometer

Cyclic Compression Porometer

Envelope Surface Area Analyzer

Filtration Media Analyzer

High Flow Porometer

Integrity Analyzer

In-Plane Porometer

Microflow Porometer

Nanopore Flow Porometer

QC Porometer

Diffusion Permeameter

Gas Permeameter

Liquid Permeameter

Vapor Permeameter

Water Vapor Transmission Analyzer

Liquid Extrusion Porosimeter

Mercury/Nonmercury Intrusion Porosimeter

Vacuapore

Water Intrusion Porosimeter (Aquapore)

BET Liquisorb
BET Sorptometer
Gas Pycnometer
Mercury Pycnometer

Also Available:

Testing Services Consulting Services Short Courses

Porous Materials, Inc.

20 Dutch Mill Rd, Ithaca, NY 14850 USA

Tel: (607)-257-5544 Toll Free in USA & Canada: 1-800-TALK-PMI

Fax: (607) 257-5639 Email: info@pmiapp.com

WWW.PMIAPP.COM

