THE PMI BET SORPTOMETER BET-202A-3OS

Not just products...solutions!

Description

PMI's BET-Sorptometer is fully automated, volumetric gas sorption analyzer to measure accurately adsorption and desorption isotherms for the characterization of surface area, pore size distribution, pore volume and pore structure of micro and mesoporous materials as well as the kinetics of adsorption.

Applications

PMI's BET Sorptometer has a multitude of applications in industries worldwide. Some applicable industries include Rock cores, Rubber, Automotive, Chemical, Ceramic, Paper, Battery Separator, Fuel Cells, Filtration, Pharmaceuticals, and Powder Metallurgy.

Principle

When clean surface is exposed to a gas, an adsorbed film forms on the surface. Adsorbed films also form on the surface of pores within a material and vapor can condense in the pores. At a constant temperature, the amount of adsorbed/condensed gas on a surface depends on the pressure of the gas. Measurement of the amount of adsorption/condensation as a function of pressure can give information on the pore structure. The PMI Sorptometers use gas adsorption/condensation to analyze pore characteristics. Further, measurement of pressure as a function of time provides the kinetics information of adsorption.

Physical Adsorption

Weak van der Waal's type interaction of molecules with a pore surface leads to physical adsorption. The Brunauer, Emmett and Teller (BET) theory of physical adsorption is normally used for analysis of adsorption data to compute surface area.

$$\frac{P}{W(P_0-P)} = \frac{1}{CW_m} \frac{C-1}{CW_m} \frac{P}{P_0}$$

Where:

W = amount of adsorbed gas

Wm = amount of gas adsorbed in a monolayer

P = gas pressure

 P_0 = equilibrium (saturation) vapor pressure at the test temperature

C = dimensionless constant that depends on the temperature and the gas/solid system

When vapor pressure, P is low compared with P_0 (0.05 < P/P_0 < 0.3), the plot of $[P/W (P_0 - P)]$ verses $[P/P_0]$ is linear and the plot yields the magnitudes of C and W_m . The surface area S per unit mass, m, of the sample is computed using the cross-sectional area of the adsorbed gas molecule:

$$S = \frac{W_m N_o a}{m}$$

Where:

N₀ = Avogadro's number

a = cross - sectional area of the adsorbed gas molecule

Wm = amount of gas adsorbed in moles

Vapor Condensation

As the relative vapor pressure (P/Po) increases, vapor eventually condenses in the pores utilizing the surface free energy available due to replacement of the solid/vapor interface by solid/liquid interface. The amount of vapor condensed in pores gives the pore volume, and the Kelvin equation gives the pore diameter.

$$\ln\left(\frac{P}{P_0}\right) = -\frac{4\gamma V \cos \theta}{DRT}$$

Where:

g = surface tension of condensed liquid

V= molar volume of condensed liquid

q = contact angle

D = pore diameter

R = gas constant

T = absolute test temperature

Adsorbed layers of molecules form on the pore walls before condensation fills the pores. Therefore the actual pore diameters are computed by adding two times the thickness of the adsorbed gas layer to D.

A complete adsorption isotherm is determined by measuring the amount of vapor adsorbed as a function of increasing pressure. A desorption isotherm is determined by measuring the amount of adsorption as a function of decreasing pressure. Based on this technique, characteristics of materials related to adsorption, desorption, surface area and pore volume can be determined.

Pore Volume & Pore Diameter

Pore volume, pore diameter and pore volume distribution can be determined accurately by the PMI BET Sorptometer. The distribution function is such that area under the function in any pore diameter range is the volume of pore in that range.

Figure 1
Pore Volume Distribution

Adsorption & Desorption Isoterms

Adsorption and desorption of gasses on samples can be accurately measured using our BET Sorptometer. The user has independent control over the quantity and spacing of pressures used in both adsorption and desorption testing. Many different kinds of analyses are available to interpret data using the supplied report generation software.

Chemisorption

Adsorption and desorption of gasses on samples can be accurately measured using our BET Sorptometer. The user has independent control over the quantity and spacing of pressures used in both adsorption and desorption testing. Many different kinds of analyses are available to interpret data using the supplied report generation software.

Specifications

- Pore size distribution analysis: Micropore (0.35 to 2 nm), mesopore (2 to 50 nm) and macropore (≥50 nm)
- No. of degassing station : 3
- **No. of analysis port :** Three (2 ports for micropore analysis i.e. measurable down to 0.35 nm pore size)
- Analysis gas as adsorbent : Nitrogen
- Degassing temperature : Ambient to ≥ 400°C
- **Relative pressure (p/po) :** Suitable for micropore (i.e. measurable down to 0.35 nm pore size) analysis
- **Vacuum :** Suitable for micropore (i.e. measurable down to 0.35 nm pore size) analysis
- Holding time for continuous analysis: ≥ 60 h
- Sample cell assembly: Suitable for fine and coarse samples
- **Power :** 220-240 V ± 5%

Features

- Adsorption of vapours (such as H₂O, Methanol, Ethanol, Benzene, Toluene etc.) Chosen gas / vapours be automatically selectable through software during analysis
- **Adsorbates:** Any Non corrosive gases such as CO_2 , ethane, methane and other hydro carbons etc.
- Analysis of single and multipoint BET surface area, pore volume and pore size distribution.
- Permits fast and reproducible surface area measurements
- Volumetric method employed measures equilibrium amount of adsorbed gas precisely without the possibility of any contamination
- **Isotherms:** Up to 1000 data points (per station) adsorption and/or desorption
- Surface Area: BET, Langmuir, STSA, DFT, BJH or more
- Micropores: NLDFT, QSDFT, Monte-Carlo, t-plot, alpha-s and others
- Mesopores: NLDFT, BJH, DH or more
- Instrument have the provision to connect to Mass Spectrometer (Optional)
 Window based software for instrument control, data acquisition and data analysis for surface area and pore size distribution

Analysis system:

Two Micropore Analysis Stations with dedicated vacuum pump having capability of 5×10^{-10} mbar or better.

LN₂ Dewar:

Minimum 3 litres, suitable for providing up to minimum 80 hours of unattended analysis. Cryogen Dewar refilled will not affect the accuracy of the analysis results.

Computer & Printer

- Branded PC should be supplied for instrument control and operation with the following minimum specifications: CPU with Intel Core i5, 2.5 GHz, OS Windows professional version 7/XP (32 or 64 bit) compatible with instruments software, HDD 500 GB, 4 GB DDR3 RAM, DVD-RW optical drive, 19 inch LED flat panel monitor, appropriate Number and types of ports such as USB for instrument operation LAN.
- Suitable UPS for running the complete equipment with 30 mins back up

Sales & Services

Our sales team is dedicated to helping our customers find which machine is right for their situation. We also offer custom machines for customers with unique needs. To find out what we can do for you, contact us. We are committed to customer support including specific service products, short response times & customer specific solutions. To quickly & flexibly meet our customer's requirement, we oller a comprehensive range of services.

Customize your machine today!

Disclaimer: Other specifications of this product are also available.

Specifications subject to change without notice.

Design subject to change without notice.

The most advanced, accurate, easy to use and reproducible Sorptometers in the world.

20 Dutch Mill Rd, Ithaca, NY 14850, USA Toll Free (US & Canada): 1-800-TALK-PMI (1-800-825-5764) Phone: 607-257-5544 Fax: 607-257-5639

Email: info@pmiapp.com www.pmiapp.com